Top-Cited Articles in Implant Dentistry

Anastasia Fardi, DDS, PhD¹/Konstantinos Kodonas, DDS, PhD²/ Theodoros Lillis, DDS, MSc³/Alexander Veis, DDS, PhD†

Purpose: Citation analysis is the field of bibliometrics that uses citation data to evaluate the scientific recognition and the influential performance of a research article in the scientific community. The aim of this study was to conduct a bibliometric analysis of the top-cited articles pertaining to implant dentistry, to analyze the main characteristics, and to display the most interesting topics and evolutionary trends. Materials and Methods: The 100 top-cited articles published in "Dentistry, Oral Surgery, and Medicine" journals were identified using the Science Citation Index Database. The articles were further reviewed, and basic information was collected, including the number of citations, journals, authors, publication year, study design, level of evidence, and field of study. Results: The highly cited articles in implant dentistry were cited between 199 and 2,229 times. The majority of them were published in four major journals: Clinical Oral Implants Research, International Journal of Oral & Maxillofacial Implants, Journal of Clinical Periodontology, and Journal of Periodontology. The publication year ranged from 1981 to 2009, with 45% published in a nine-year period (2001 to 2009). Publications from the United States (29%) were the most heavily cited, followed by those from Sweden (23%) and Switzerland (17%). The University of Göteborg from Sweden produced the highest number of publications (n = 19), followed by the University of Bern in Switzerland (n = 13). There was a predominance of clinical papers (n = 42), followed by reviews (n = 25), basic science research (n = 21), and proceedings papers (n = 12). Peri-implant tissue healing and health (24%), implant success/failures (19.2%), and biomechanical topics (16.8%) were the most common fields of study. Conclusion: Citation analysis in the field of implant dentistry reveals interesting information about the topics and trends negotiated by researchers and elucidates which characteristics are required for a paper to attain a "classic" status. Clinical science articles published in highimpact specialized journals are most likely to be cited in the field of implant dentistry. INT J ORAL MAXILLOFAC IMPLANTS 2017;32:555-564. doi: 10.11607/jomi.5331

Keywords: bibliometrics, citation analysis, implant dentistry

Beginning with Swedish orthopedic surgeon Brånemark's first reports of osseointegration and titanium dental implants, the practice of replacing missing teeth changed the dental practice. Since then, research in implant dentistry has evolved at a rapid pace, and a substantial body of literature has

presented significant developments. Much of the scientific contribution of Brånemark's investigations and that of other important historical advances to dental implant research is reflected in the number of received citations.

Bibliometrics is a field of quantitative science that applies mathematical and statistical methods, such as citation analysis, to evaluate the scientific recognition and the influential performance of a research article in the scientific community. Although the number of citations is not indicative of the quality or the importance of a research paper, it determines the reputation of the authors as well as the journals' impact factor.² Web of Science belongs to the Thomson Reuters Corporation and provides electronic access to the world's citation databases. Science Citation Index Expanded, which was developed by the Institute for Scientific Information (ISI), may be accessed via Web of Science Core Collection.³ Web of Science also publishes the annual Journal Citation Reports, which offers systematic means to critically evaluate the world's leading journals based on citation data.4

Correspondence to: Dr Anastasia Fardi, Department of Dentoalveolar Surgery, Surgical Implantology & Radiology, School of Dentistry, Aristotle University of Thessaloniki, 56124 Thessaloniki, Greece. Email: anastasiafardi

©2017 by Quintessence Publishing Co Inc.

¹Department of Dentoalveolar Surgery, Surgical Implantology & Radiology, School of Dentistry, Aristotle University of Thessaloniki, Greece.

²Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, Greece.

³Department of Dentoalveolar Surgery, Surgical Implantology & Radiology, School of Dentistry, Aristotle University of Thessaloniki, Greece.

[†]Deceased.

Evaluation of the academic impact of the published literature is gaining substantial interest. There have been numerous publications that have attempted to generate "citation classics," "top," or "highly" cited papers in different specialties of medical science, including cardiology, ⁵ radiology, ^{6,7} orthopedics, ⁸ emergency medicine, ⁹ neurosurgery, ¹⁰ obstetrics and gynecology, ¹¹ otolaryngology, ^{12,13} and plastic surgery. ¹⁴ Citation analyses have also been conducted to evaluate the scientific performance of authors, ¹⁵ journals, ^{16,17} and countries. ¹⁸

Although there has been a top-citation analysis in general dentistry¹⁹; in some subspecialties of dentistry, such as orthodontics,²⁰ endodontics,²¹ and periodontology²²; and in specific dental fields such as dental traumatology²³ and human cleft lip and palate research,²⁴ no such assessment exists in the field of dental implantology. The aim of this study was to conduct a bibliometric analysis of the top-cited articles pertaining to implant dentistry published in "Dentistry, Oral Surgery, and Medicine" journals and to analyze the main characteristics covering publication year, journals, authors, countries, institutions, and field of study.

MATERIALS AND METHODS

The methodology provided in the present study was based on the Science Citation Index Expanded database accessed via the Web of Science Core Collection before/and on October 30, 2015. According to Journal Citation Reports of edition year 2014, 88 journals were included under the Institute of Science Information Web of Science subject category "Dentistry, Oral Surgery and Medicine." The keyword "implant*" was searched in the topic field (including article title, abstract, author, keywords, and Key Words Plus) in Web of Science Core Collection from 1900 to October 2015. No time, language, or any other limitation was applied in the investigation. To limit the search only to relevant studies, the authors used the filter of the "front page," meaning that only articles that contain the indicated keywords on the front page, title, abstract, and author keywords were included. Two independent investigators evaluated the results and selected the 100 topcited articles dedicated to dental implant research. In case of discrepancy, consensus was reached by involvement of a third investigator. The articles were then ranked by number of citations using the option "Times cited-highest to lowest" listed on the Web of Science and were downloaded into spreadsheet software using Microsoft Excel 2010.

These articles were further reviewed with regard to publication name, number of citations, publication

year, number of authors, institution of the first author (single institution, interinstitutionally, multiuniversity, international collaborative articles), and country of the first author (for the purposes of the research, the institution and the country of the first author was considered as the country of the origin of the article). Furthermore, mean citations per year values (with reference to the year 2015) for all publications were calculated to account for the time bias that is inherent to bibliometric studies. It is known that the simple assessment of absolute citation number favors older papers and risks excluding more recent influential publications.

Each article was further analyzed, and basic information was collected, including article type (clinical research, basic science article, and review), study design, level of evidence, and field of study. Clinical study design included randomized controlled trial (RCT), cohort, case control, cross-sectional study, case series, and case reports. A basic science article was further categorized to biomechanics, in vivo (animal research), or in vitro study. The level of evidence of each article was determined based on criteria published by the Oxford Centre for Evidence–Based Medicine. Finally, papers were characterized according to their field of study into subject areas related to dental implant research. Each publication could be assigned to one or more categories.

RESULTS

A total of 25,057 documents were identified in the initial search. Among them, 578 were cited more than 100 times. The number of citations of the 100 articles selected varied between 199 and 2,229 (Table 1). ^{26–125} The mean number of citations per article was 321.

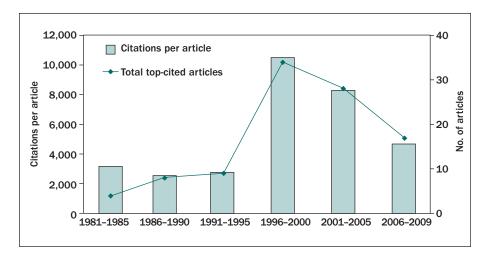

Although it is beyond the scope of this article to analyze each article separately, the subject of the most cited articles shows major trends in dental implant dentistry. The most cited paper, with 2,229 citations and with the topmost growth rate of 64 citations annually, was the study of Adell et al about the rehabilitation of the edentulous jaw using osseointegrated implants, which was published in the International Journal of Oral Surgery in 1981.²⁶ Besides the evaluation and standardization of the surgical protocol and prosthetic techniques, they observed the clinical results achieved on 895 implants for 5 to 9 years (Table 1, rank: 1). The following article, having 736 citations and a smaller mean growth rate of 39 citations per year, was a multicenter study about 2,359 ITI implants placed in 1,003 patients, published in 1997 by Buser et al in Clinical Oral Implants Research.27 One of the concluding remarks stating that "non submerged ITI implants

Table 1	The 100 Top-Cited Articles in Implant
	Dentistry

	Dentistry		
Rank	Article	Citations	Mean citations
1	Adell et al ²⁶	2,229	63.68
2	Buser et al ²⁷	736	38.73
3	Marx et al ²⁸	698	63.45
4	Jaffin and Berman ²⁹	605	24.20
5	Esposito et al ³⁰	579	32.17
6	Le Guéhennec et al ³¹	570	63.33
7	Esposito et al ³²	555	30.83
8	Buser et al ³³	503	41.92
9	Schropp et al ³⁴	464	35.69
10	Buser et al ³⁵	449	17.27
11	Quirynen and Bollen ³⁶	433	20.62
12	Albrektsson and Wennerberg ³⁷	412	34.33
13	Berglundh et al ³⁸	401	28.64
14	Tarnow et al ³⁹	401	21.11
15	Anitua ⁴⁰	394	23.18
16	Buser et al ⁴¹	391	15.04
17	Albrektsson et al ⁴²	391	13.96
18	Lindquist et al ⁴³	370	18.50
19	Smith and Zarb ⁴⁴	369	13.67
20	Schnitman et al ⁴⁵	366	19.26
21	Berglundh et al ⁴⁶	366	14.64
22	Meredith et al ⁴⁷	362	18.10
23	Miyawaki et al ⁴⁸	361	27.78
24	Scarfe et al ⁴⁹	351	35.10
25	Schroeder et al ⁵⁰	350	10
26	Meredith ⁵¹	345	19.17
27	Whitman et al ⁵²	343	18.05
28	Jensen et al ⁵³	338	18.78
29	Davies ⁵⁴	333	18.50
30	Wennerberg et al ⁵⁵	329	15.67
31	Kasemo ⁵⁶		
		327	9.91
32	Jung et al ⁵⁷	323 315	40.38
33	Wennerberg and Albrektsson ⁵⁸		39.38
34	Cochran et al ⁵⁹ Lekholm et al ⁶⁰	314	22.43
35		312	18.35
36	Berglundh and Lindhe ⁶¹	306	15.30
37	Araújo et al ⁶²	305	27.73
38	Berglundh et al ⁶³	302	23.23
39	Geng et al ⁶⁴	302	20.13
40	Zarb and Schmitt ⁶⁵	300	11.54
41	Aghaloo and Moy ⁶⁶	299	33.22
42	Roberts et al ⁶⁷	299	9.34
43	Lindhe and Meyle ⁶⁸	298	37.25
44	Isidor ⁶⁹	293	14.65
45	Manicone et al ⁷⁰	291	32.33
46	Tarnow et al ⁷¹	288	18
47	Lazzara and Porter ⁷²	287	28.7
48	Botticelli et al ⁷³	286	23.83
49	Albrektsson ⁷⁴	285	10.18
50	Goodacre et al ⁷⁵	278	21.38

Table 1 The 100 Top-Cited Articles in Implant Dentistry Cont.

	Dentistry Cont.		
Rank	Article	Citations	Mean citations
51	Cochran et al ⁷⁶	275	14.47
52	Berglundh and Lindhe ⁷⁷	271	14.26
53	Zitzmann and Berglundh ⁷⁸	269	33.63
54	Buser et al ⁷⁹	267	22.25
55	Quirynen et al ⁸⁰	257	18.36
56	Zitzmann et al ⁸¹	257	13.53
57	Goodacre et al ⁸²	256	15.06
58	Del Fabbro et al ⁸³	255	21.25
59	Buser et al ⁸⁴	250	12.5
60	Abrahamsson et al ⁸⁵	245	12.25
61	Sánchez et al ⁸⁶	244	18.77
62	Gapski et al ⁸⁷	242	18.62
63	Pjetursson et al ⁸⁸	240	26.67
64	Hermann et al ⁸⁹	238	12.53
65	Meredith et al ⁹⁰	238	12.53
66	Chiapasco et al ⁹¹	236	12.42
67	Karoussis et al ⁹²	235	18.08
68	Albrektsson and Wennerberg ⁹³	233	19.42
69	Kan et al ⁹⁴	233	17.92
70	Cheng et al ⁹⁵	230	19.17
71	Pjetursson et al ⁹⁶	228	28.5
72	Teughels et al ⁹⁷	228	22.8
73	Mericske-Stern et al ⁹⁸	228	10.36
74	Pjetursson et al ⁹⁹	227	18.92
75	Piattelli et al ¹⁰⁰	223	13.12
76	Kent and Block ¹⁰¹	221	08.19
77	Choquet et al ¹⁰²	219	14.6
78	Fontijn-Tekamp et al ¹⁰³	217	13.56
79	Brånemark et al ¹⁰⁴	217	10.33
80	Roberts et al ¹⁰⁵	217	8.04
81	Roos-Jansåker et al ¹⁰⁶	216	21.6
82	Kan et al ¹⁰⁷	216	16.62
83	Lascala et al ¹⁰⁸	215	17.92
84	Abrahamsson et al ¹⁰⁹	214	17.83
85	Randow et al ¹¹⁰	213	12.53
86	Klokkevold et al ¹¹¹	213	11.21
87	Szmukler-Moncler et al ¹¹²	211	13.19
88	Lekovic et al ¹¹³	210	11.05
89	McAllister and Haghighat ¹¹⁴	208	23.11
90	Wetzel et al ¹¹⁵	208	9.91
91	Hermann et al ¹¹⁶	206	13.73
92	Misch ¹¹⁷	205	10.79
93	Abrahamsson et al ¹¹⁸	204	10.74
94	Hebel and Gajjar ¹¹⁹	204	10.74
95	Heitz-Mayfield ¹²⁰	203	25.38
96	Chiapasco et al ¹²¹	203	20.3
97	Park et al ¹²²	203	20.3
98	Chen et al ¹²³	201	16.75
99	Becker et al ¹²⁴	200	9.1
100	Pontoriero et al ¹²⁵	199	9.05
100	1 Ontolicio et al	133	5.05

Fig 1 Number of articles and citations per article in implant dentistry.

maintain survival and success rates well above 90% for observation periods up to 8 years" reveals that research interests emphasize the implant success rates and elucidates why this paper remains among the highest cited articles in dental implant literature. The third most cited paper, published in 2005 by Marx et al in the *Journal of Oral and Maxillofacial Surgery*, ²⁸ described 119 cases of bisphosphonate-related bone exposure, and received 698 citations (mean citation rate increase: 63 citations annually) in very few years.

In terms of the citations per year, five articles ranking third, sixth, eighth, 32nd, and 33rd had greater mean growth rate than the Buser et al study²⁷ (rank: 2). The common feature of these articles is the publication year (all published after 2004). Indeed, the paper of Le Guéhennec et al (rank: 6) published in 2007,³¹ which describes the different surfaces and methods that enhance implant osseointegration, collected 570 citations in 8 years, presenting a high citation rate increase (63 citations annually).

The 100 top-cited articles were published in the past 29 years from 1981 to 2009, with 12 published before 1990, 43 between 1991 and 2000, and 45 between 2001 and 2009. Figure 1 illustrates the distribution of these 100 articles over the years and their citations per publication. The three most productive years were 1997 (15 articles), 2004 (11 articles), and 2003 (9 articles). As articles need time to accumulate citations, neither of the most cited articles were published in the most recent 5 years (2010 to 2015). Eighty-eight percent of the most cited articles were published after 1991.

The Journal Citation Reports 2014 indexes 88 journals with citation references under the subcategory "Dentistry, Oral Surgery, and Medicine." The majority of the highly cited articles were published in 18 journals with impact factors ranging from 0.358 to 4.139. Clinical Oral Implants Research published the highest number of top-cited papers (n = 32), followed by the

International Journal of Oral & Maxillofacial Implants with 14 and the Journal of Clinical Periodontology with 11 (Table 2). The Journal of Periodontology and the Journal of Prosthetic Dentistry contributed 10 and 8 articles to the list, respectively, despite their high impact factors.

The number of authors ranged from 1 to 16. Eight articles were written by a single author and 16 by two authors. Twenty-six and 27 articles were published by three and four authors, respectively, while the other 23 publications were attributed to five or more investigators. A total of 264 authors contributed to the highly cited publications; 217 (82.2%) and 26 (9.8%) of them published one and two top-cited papers, respectively. Table 3 lists the top 21 authors with three or more highly cited papers. Although Niklaus P. Lang had no articles as first author, he was the most cited author with 12 out of 100 articles, followed by Daniel Buser and Tord Berglundh with 10 articles each, Jan Lindhe with 9 articles, and Tomas Albrektsson with 6 publications (Table 3).

Altogether, the 100 highly cited articles originated from 19 countries (Table 4). The United States had the largest number of top-cited publications (n = 29). Sweden and Switzerland published 23 and 17 articles, respectively, whereas Belgium and Italy contributed five articles each to the list. The highly productive institutions appear in Table 5, with the University of Göteborg of Sweden (19 articles) and the University of Bern of Switzerland (13 articles) leading the list. Loma Linda University in California, University of Leuven in Belgium, and University of Texas Health Science Center at San Antonio produced four articles each. Concerning the collaboration type, 51 articles came from independent institutions, 7 from interinstitutional collaborations within the same university, 14 from multiuniversity collaboration within the same country, and 28 articles were the product of international collaborations.

Table 2	Dental Journals in Which the 100
	Top-Cited Articles Were Published

Top-Cited Articles were Published		
Journal name	2014 journals' impact factor	No. of articles included in the top 100
Clinical Oral Implants Research	3.889	32
International Journal of Oral & Maxillofacial Implants	1.451	14
Journal of Clinical Periodontology	4.010	11
Journal of Periodontology	2.706	10
Journal of Prosthetic Dentistry	1.753	8
International Journal of Prosthodontics	1.464	4
Journal of Oral & Maxillofacial Surgery ^a	1.425	4
American Journal of Orthodontics & Dentofacial Orthopedics	1.382	3
International Journal of Periodontics & Restorative Dentistry	1.415	3
European Journal of Oral Sciences	1.488	2
Journal of Dental Research	4.139	2
Angle Orthodontist	1.225	1
Dental Materials	3.769	1
Dentomaxillofacial Radiology	1.390	1
International Journal of Oral Surgery ^b	1.565	1
Journal of Dentistry	2.749	1
Journal of Maxillofacial Surgery	2.933	1
Journal of the Canadian Dental Association	0.358	1
3Continued as January of Overic Mavillaterial	C	

^a Continued a	as Journal	of Cranio-Maxillofacial	Surgery.

^b Continued as International Journal of Oral and Maxillofacial Surgery.

Table 3 Authors of the Top-Cited Articles			
Author	First author	Coauthor	Total
Lang NP	0	12	12
Buser D	6	4	10
Berglundh T	5	5	10
Lindhe J	1	8	9
Albrektsson T	4	2	6
Cochran DL	2	3	5
Abrahamsson I	3	1	4
Pjetursson BE	3	1	4
Kan JYK	2	2	4
Wennerberg A	2	2	4
Lekholm U	1	3	4
Brägger U	0	4	4
Rungcharassaeng K	0	4	4
Schenk RK	0	4	4
Zwahlen M	0	4	4
Hermann JS	2	1	3
Quirynen M	2	1	3
Tarnow DP	2	1	3
Meredith N	0	3	3
Thomsen P	0	3	3
van Steenberghe D	0	3	3

Table 4	Countries of Origin of the 100
	Ton-Cited Articles in Implant Dentistry

Top-Cited Articles III II	iipiant Dentistry
Country	No. of articles
USA	29
Sweden	23
Switzerland	17
Belgium	5
Italy	5
United Kingdom	3
Australia	2
Brazil	2
Canada	2
Denmark	2
France	2
Germany	1
Japan	1
Iceland	1
Netherlands	1
Singapore	1
South Korea	1
Spain	1
Taiwan	1

Table 5 Institutions of Origin with Two or More Top-Cited Articles in Implant Dentistry

Delitistry	
Institution	No. of articles
University of Göteborg	19
University of Bern	13
Loma Linda University	4
University of Leuven	4
University of Texas Health Science Center at San Antonio	4
University of Bristol	3
University of California Los Angeles	3
University of Milan	3
University of Zurich	3
Aarhus University	2
New York University	2
University of Toronto	2

Table 6

Basic In vivo

In vitro

Proceedings papers

Total

Articles in Implant Dentistry Study design Level of evidence No. of articles Clinical **RCT** 2 (EL 2) 6 Cohort (EL 3) (EL 4) 19 Case series (EL 4) 9 Poor quality cohort Cross sectional (EL 4) 6 Total 42 Review Narrative 18 (EL 5) Systematic (EL 1) 7 25 Total

(EL 5)

(EL 5)

19

2

21

12

Study Design of the 100 Top-Cited

Table 7 Field of Study of Top-Cited Articles		
Field of study No. (%)		
Peri-implant tissue healing and health	30 (24)	
Implant success/failure	24 (19.2)	
Biomechanics	21 (16.8)	
Augmentation procedures and grafts	19 (15.2)	
Implant loading	11 (8.8)	
Surgical aspects	5 (4)	
Esthetics	4 (3.2)	
Orthodontic implants	4 (3.2)	
Prosthodontic aspects	3 (2.4)	
Preoperative imaging CBCT 2 (1.6)		
Impact of patient's general health 2 (1.		

Forty-two articles were classified as clinical research, 25 were reviews of the literature, and 21 were basic research projects. The remaining 12 studies were proceedings papers. The most common methodologic designs were uncontrolled case series (19 articles), basic in vivo animal studies (19 articles), followed by narrative review articles (18 articles). Twenty-one observational studies, including nine poor quality cohort, six cohort, and six cross-sectional studies, were identified in the top 100 list. Seven and two papers out of the top 50 were considered as level I or II evidence, consisting of systematic reviews and RCTs, respectively (Table 6). None of the top 100 articles was categorized as a meta-analysis.

The top 11 subject areas covered in highly cited papers of implant literature (presented as percentage of all published articles) were peri-implant tissue healing and health (24%; 8% of them assigned peri-implant disease, 5.6% osseointegration, and 4% peri-implant soft tissues), implant success/failure (19.2%), biomechanics (16.8%; including implant surface [10.4%] and implant stability [4.8%]). Furthermore, augmentation procedures and grafts (15.2%); implant loading (8.8%); surgical issues (4%), including immediate implant placement (3.2%); esthetics (3.2%); orthodontic implants (3.2%); prosthodontic topics (2.4%); preoperative imaging, particularly cone beam computed tomography (1.6%); and impact of patient's general health (1.6%) ranged among the top issues (Table 7).

DISCUSSION

The field of implant dentistry is an ever-changing domain with new developments occurring every day. From the late 20th century to the present day, implant dentistry has evolved into an evidence-based clinical science. The purpose of the present study was to identify the most cited articles in the field of implant dentistry in "Dentistry, Oral Surgery and Medicine" journals. According to the definition adapted by the Journal Citation Reports, for the journals included under the subcategory "Dentistry, Oral Surgery and Medicine," the subcategory "covers resources on the anatomy, physiology, biochemistry, and pathology of the teeth and oral cavity. Thus, this category of journals covers a wide variety of sub-disciplines ranging from basic sciences to clinical specialties. Specifically, it includes resources on periodontal disease, dental implants, oral and maxillofacial surgery, oral pathology, as well as on community and public health dentistry, and pediatric dentistry."³

Although the number of times a published paper is cited is not indicative of its scientific value, it displays its influence in the progress of the respective research field. Nonetheless, the number of citations for an article depends not only on its scientific significance, but also on the research field that it covers. Thus, a paper related to cardiology (331 to 3,484)⁵ may have more citations than a paper related to dentistry (326 to 2,050),19 although both of them have the same scientific significance. The top 100 articles in implant dentistry were cited between 199 and 2,229 times. This range is higher than what was observed in other dental fields such as endodontology in 2011 (87 to 554),²¹ periodontology in 2007 (100 to 346),²² and orthodontics in 2013 (89 to 545).²⁰ The most highly cited articles were published in a variety of journals, 18 in all. More than half (67) of these articles were published in four

major journals: Clinical Oral Implants Research, International Journal of Oral & Maxillofacial Implants, Journal of Clinical Periodontology, and Journal of Periodontology. The first two journals are dedicated solely to dental implant research, while the second ones cover the field of implant and periodontal research.

Consistent with many other citation analyses, 9,20,21 the majority of the most cited publications (29%) originated from academic institutions in the United States, which is attributed to the large number of researchers and adequate research budgets for scientific investigation. Although the United States is the leading country in the number of medical research publications, there were an increasing number of highly cited publications (61 articles) by authors residing in Europe. It is also worth noting that only eight articles originating from the United States resulted from international collaborations, while the rest of them were produced either by one institution (14 articles) or by multicentered collaborations (one paper from interinstitutional collaboration and six from multiuniversity collaboration). The University of Göteborg and the University of Bern published five international collaborative articles each.

The most highly cited articles in implant dentistry were in the field of clinical science (42%), which is in accordance with the majority of citation analysis in dentistry¹⁹ and in other medical disciplines, which reports the dominance of clinical rather than basic science articles. 6,14,17,20 This also reflects the surgical nature of implant dentistry, which emphasizes surgical technique. Contrary to the present results, basic research was leading the top-cited list in the field of endodontics,²¹ whereas review articles were the dominant research type in the bibliometric analysis of cardiovascular literature.⁵ The high percentage (37%) of reviews and proceedings papers among the highly cited papers in implant dentistry might be attributed to the preference of authors to cite the reviewed knowledge instead of the original research articles. In the present analysis regarding the levels of evidence, the majority of articles were of levels IV and V, consisting of uncontrolled case series, narrative reviews, and basic research papers. Surprisingly, there were only two RCTs and seven systematic reviews. Coinciding with the tendency observed in dentistry 19,20,22 and in other surgical disciplines, 11,14 in implant dentistry, research with a higher number of citations does not correlate with a high level of evidence.

The fields of study of the highly cited articles normally vary from one decade to another and reflect scientific interests in a certain period. In the present analysis, peri-implant tissue healing and health was the predominant research subject. The majority of studies that fell into this category were studies that evaluated peri-implant diseases, peri-implant tissue

healing, particularly osseointegration and peri-implant soft tissues. The second most common research area was implant success/failures, including survival rates and complications. Biomechanical topics, including implant surface and stability studies, were represented adequately among the cited subjects and were followed at a small distance by augmentation procedures and grafts. Coverage of loading topics was higher than other fields such as surgical and prosthodontic topics, esthetics, and orthodontic implants. The least extensively cited subjects were preoperative imaging and the impact of patient's general health.

Although the authors tried not to eliminate results of the study by applying the least possible exclusion criteria, the inherent limitations of citation analyses were inevitable. First and foremost, this type of analysis is usually beneficial for older publications, which have the advantage of time and are proceeding in the citation ranking, while recent innovative publications are often omitted. 126 Indeed, almost half of the top-cited articles (48%) in implant dentistry were published in the past 15 years. According to the present results, a minimum publication period of 6 to 15 years is required for an article to accumulate a sufficient number of citations and become citation classics. However, the authors tried to minimize the effect of time by assessing the mean citations per year. They observed that articles published the last 10 years presented high annual citation growth rates. This can be explained by the fact that older and even "true classics" articles are progressively cited less often, since their information is being adopted by the current knowledge through time.

Secondly, only one electronic medical bibliographic resource was investigated, which might have affected the final top list. Indeed, it has been shown that a lot of significant differences exist between different databases. 127,128 Additionally, the search tools used to gather bibliographic data do not take into consideration selfcitation by a journal or an author or the potential bias of authors who prefer citing articles from colleagues or from the journal in which the paper will be published. 129 Last but not least, the search of the highly cited work was restricted to journals belonging to the subcategory "Dentistry, Oral Surgery and Medicine." In other words, some influential papers with a high number of citations published in other nondental scientific journals were unavoidably excluded by the methodology used in this investigation. For example, an animal study by Buser et al about the influence of different surface characteristics on bone integration of titanium implants, with 989 citations, was not included, as it was published in a journal categorized in the research area of Engineering and Materials Science. 130 For the same reason, a review paper by Szmukler-Moncler et al, which evaluated the effect of time loading and

micromotion on the bone-implant interface, was also excluded. In spite of the 353 citations, the paper was published in a nondental journal and unavoidably was not included. Brånemark's influential paper published in 1983 in the *Journal of Prosthetic Dentistry* and cited more than 700 times has also been omitted as it lacks an abstract and keywords.

CONCLUSIONS

This bibliometric analysis provides insight into the progress and the interesting trends of dental implant research over the last 30 years. Obviously, this is a dynamic list that is changing over time, according to scientific interests and prevalent research tendency that has evolved over the decades. It is interesting that the topics of "peri-implant tissue healing and health" and "implant success/failure" were well represented in the top 100 articles. Clinical science articles published in high-impact specialized journals are most likely to be cited in the field of implant dentistry. It is recommended that dentists who claim expertise in implant dentistry should acknowledge all these important articles on this list. It will also be interesting to see if the growing demand for evidence-based dentistry will influence the quality of implant research articles in the future, and eventually, the top 100 list will include more high-level evidence studies.

ACKNOWLEDGMENTS

The authors reported no conflicts of interest related to this study.

REFERENCES

- Brånemark Pl. Osseointegration and its experimental background. J Prosthet Dent 1983:50:399–410.
- Cheek J, Garnham B, Quan J. What's in a number? Issues in providing evidence of impact and quality of research(ers). Qual Health Res 2006;16:423–435.
- Science Thomson Reuters. http://www.isinet.com. Accessed October 2015.
- 4. Journal Citation Reports 2014. Institute for Scientific Information Web site. http://isiknowledge.com. Accessed 30 October 2015.
- Shuaib W, Khan MS, Shahid H, Valdes EA, Alweis R. Bibliometric analysis of the top 100 cited cardiovascular articles. Am J Cardiol 2015;115:972–981.
- Pagni M, Khan NR, Cohen HL, Choudhri AF. Highly cited works in radiology: The top 100 cited articles in radiologic journals. Acad Radiol 2014;21:1056–1066.
- 7. Yoon DY, Yun EJ, Ku YJ, et al. Citation classics in radiology journals: The 100 top-cited articles, 1945-2012. AJR Am J Roentgenol
- 8. Hui Z, Yi Z, Peng J. Bibliometric analysis of the orthopedic literature. Orthopedics 2013;36:e1225–e1232.
- Shuaib W, Acevedo JN, Khan MS, Santiago LJ, Gaeta TJ. The top 100 cited articles published in emergency medicine journals. Am J Emerg Med 2015;33:1066–1071.

- Khan NR, Lee SL, Brown M, et al. Highly cited works in skull base neurosurgery. World Neurosurg 2015;83:403–418.
- Brandt JS, Downing AC, Howard DL, Kofinas JD, Chasen ST. Citation classics in obstetrics and gynecology: The 100 most frequently cited journal articles in the last 50 years. Am J Obstet Gynecol 2010;203:355.e1–e7.
- Coelho DH, Edelmayer LW, Fenton JE. A century of citation classics in otolaryngology-head and neck surgery journals revisited. Laryngoscope 2014:124:1358–1362.
- Fenton JE, Roy D, Hughes JP, Jones AS. A century of citation classics in otolaryngology-head and neck surgery journals. J Laryngol Otol 2002;116:494–498.
- Joyce KM, Joyce CW, Kelly JC, Kelly JL, Carroll SM. Levels of evidence in the plastic surgery literature: a citation analysis of the top 50 'classic' papers. Arch Plast Surg 2015;42:411–418.
- Boyack KW, Klavans R, Sorensen AA, Ioannidis JP. A list of highly influential biomedical researchers, 1996-2011. Eur J Clin Invest 2013:43:1339–1365
- Brennan PA, Habib A. What are we reading? A study of downloaded and cited articles from the British Journal of Oral and Maxillofacial Surgery in 2010. Br J Oral Maxillofac Surg 2011;49:527–531.
- Lefaivre KA, Guy P, O'Brien PJ, Blachut PA, Shadgan B, Broekhuyse HM. Leading 20 at 20: Top cited articles and authors in the Journal of Orthopaedic Trauma, 1987-2007. J Orthop Trauma 2010;24:53–58.
- Glanville J, Kendrick T, McNally R, Campbell J, Hobbs FD. Research output on primary care in Australia, Canada, Germany, the Netherlands, the United Kingdom, and the United States: Bibliometric analysis. BMJ 2011;342:d1028.
- Feijoo JF, Limeres J, Fernández-Varela M, Ramos I, Diz P. The 100 most cited articles in dentistry. Clin Oral Investig 2014;18:699–706.
- Hui J, Han Z, Geng G, Yan W, Shao P. The 100 top-cited articles in orthodontics from 1975 to 2011. Angle Orthod 2013;83:491–499.
- 21. Fardi A, Kodonas K, Gogos C, Economides N. Top-cited articles in endodontic journals. J Endod 2011;37:1183–1190.
- Nieri M, Saletta D, Guidi L, et al. Citation classics in periodontology: A controlled study. J Clin Periodontol 2007;34:349–358.
- 23. Jafarzadeh H, Sarraf Shirazi A, Andersson L. The most-cited articles in dental, oral, and maxillofacial traumatology during 64 years. Dent Traumatol 2015;31:350–360.
- Christou P, Antonarakis GS. The 100 most-cited human cleft lip and palate-related articles published in dentistry, oral surgery, and medicine journals. Cleft Palate Craniofac J 2015:52:437–446.
- Oxford Centre for Evidence-Based Medicine. OCEBM 2011 Levels of Evidence. http://www.cebm.net/index.aspx?o=5653. Accessed 30 March 2017.
- Adell R, Lekholm U, Rockler B, Brånemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387–416.
- Buser D, Mericske-Stern R, Bernard JP, et al. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants. Clin Oral Implants Res 1997:8:161–172.
- Marx RE, Sawatari Y, Fortin M, Broumand V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: Risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 2005;63:1567–1575.
- 29. Jaffin RA, Berman CL. The excessive loss of Brånemark fixtures in type IV bone: A 5-year analysis. J Periodontol 1991;62:2–4.
- Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 1998;106:721–764.
- Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844–854.
- Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci 1998;106:527–551.
- Buser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529–533.
- Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: A clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent 2003;23:313–323.

- Buser D, Brägger U, Lang NP, Nyman S. Regeneration and enlargement of jaw bone using guided tissue regeneration. Clin Oral Implants Res 1990;1:22–32.
- Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J Clin Periodontol 1995;22:1–14.
- Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17:536–543.
- Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol 2002;29(suppl 3):197–212; discussion 232–233.
- Tarnow DP, Emtiaz S, Classi A. Immediate loading of threaded implants at stage 1 surgery in edentulous arches: Ten consecutive case reports with 1- to 5-year data. Int J Oral Maxillofac Implants 1997:12:319–324.
- Anitua E. Plasma rich in growth factors: Preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants 1999 Jul-Aug;14:529–535.
- Buser D, Weber HP, Lang NP. Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin Oral Implants Res 1990;1:33–40.
- Albrektsson T, Dahl E, Enbom L, et al. Osseointegrated oral implants. A Swedish multicenter study of 8139 consecutively inserted Nobelpharma implants. J Periodontol 1988;59:287–296.
- Lindquist LW, Carlsson GE, Jemt T. A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants. Clinical results and marginal bone loss. Clin Oral Implants Res 1996;7:329–336.
- 44. Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent 1989:62:567–572.
- Schnitman PA, Wöhrle PS, Rubenstein JE, DaSilva JD, Wang NH. Ten-year results for Brånemark implants immediately loaded with fixed prostheses at implant placement. Int J Oral Maxillofac Implants 1997;12:495–503.
- Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. The soft tissue barrier at implants and teeth. Clin Oral Implants Res 1991:2:81–90.
- 47. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 1996;7:261–267.
- Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003:124:373–378.
- Scarfe WC, Farman AG, Sukovic P. Clinical applications of conebeam computed tomography in dental practice. J Can Dent Assoc 2006;72:75–80.
- Schroeder A, van der Zypen E, Stich H, Sutter F. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg 1981;9:15–25.
- 51. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11:491–501.
- Whitman DH, Berry RL, Green DM. Platelet gel: An autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 1997;55:1294–1299.
- Jensen OT, Shulman LB, Block MS, Iacono VJ. Report of the Sinus Consensus Conference of 1996. Int J Oral Maxillofac Implants 1998;13(suppl):11–45.
- 54. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391–401.
- Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clin Oral Implants Res 1995;6:24–30.
- Kasemo B. Biocompatibility of titanium implants: Surface science aspects. J Prosthet Dent 1983;49:832–837.
- Jung RE, Pjetursson BE, Glauser R, Zembic A, Zwahlen M, Lang NP. A systematic review of the 5-year survival and complication rates of implantsupported single crowns. Clin Oral Implants Res 2008;19:119–130.
- Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review. Clin Oral Implants Res 2009;20(suppl 4):172–184.

- Cochran DL, Buser D, ten Bruggenkate CM, et al. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: Early results from clinical trials on ITI SLA implants. Clin Oral Implants Res 2002;13:144–153.
- Lekholm U, Gunne J, Henry P, et al. Survival of the Brånemark implant in partially edentulous jaws: A 10-year prospective multicenter study. Int J Oral Maxillofac Implants 1999;14:639–645.
- Berglundh T, Lindhe J. Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol 1996;23:971–973.
- Araújo MG, Sukekava F, Wennström JL, Lindhe J. Ridge alterations following implant placement in fresh extraction sockets: An experimental study in the dog. J Clin Periodontol 2005;32:645–652.
- Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 2003:14:251–262.
- Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: A review of the literature. J Prosthet Dent 2001:85:585–598.
- Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: The Toronto study. Part III: Problems and complications encountered. J Prosthet Dent 1990;64:185–194.
- Aghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants 2007;22(suppl):49–70.
- Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 1984:86:95–111.
- Lindhe J, Meyle J, Group D of European Workshop on Periodontology. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol 2008;35(suppl 8):282–285.
- Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143–152.
- Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: Basic properties and clinical applications. J Dent 2007;35:819–826.
- Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71:546–549.
- Lazzara RJ, Porter SS. Platform switching: A new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent 2006;26:9–17.
- Botticelli D, Berglundh T, Lindhe J. Hard-tissue alterations following immediate implant placement in extraction sites. J Clin Periodontol 2004;31:820–828.
- Albrektsson T. A multicenter report on osseointegrated oral implants. J Prosthet Dent 1988:60:75–84.
- Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003:90:121–132.
- Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 1997;68:186–198.
- 77. Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res 1997;8:117–124.
- Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol 2008;35(suppl 8):286–291.
- Buser D, Martin W, Belser UC. Optimizing esthetics for implant restorations in the anterior maxilla: Anatomic and surgical considerations. Int J Oral Maxillofac Implants 2004;19(suppl):43–61.
- Quirynen M, De Soete M, van Steenberghe D. Infectious risks for oral implants: A review of the literature. Clin Oral Implants Res 2002:13:1–19
- Zitzmann NU, Naef R, Schärer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants 1997;12:844–852.
- 82. Goodacre CJ, Kan JY, Rungcharassaeng K. Clinical complications of osseointegrated implants. J Prosthet Dent 1999;81:537–552.
- Del Fabbro M, Testori T, Francetti L, Weinstein R. Systematic review of survival rates for implants placed in the grafted maxillary sinus. Int J Periodontics Restorative Dent 2004;24:565–577.

- Buser D, Dula K, Hirt HP, Schenk RK. Lateral ridge augmentation using autografts and barrier membranes: A clinical study with 40 partially edentulous patients. J Oral Maxillofac Surg 1996;54:420–432.
- Abrahamsson I, Berglundh T, Wennström J, Lindhe J. The peri-implant hard and soft tissues at different implant systems. A comparative study in the dog. Clin Oral Implants Res 1996;7:212–219.
- Sánchez AR, Sheridan PJ, Kupp LI. Is platelet-rich plasma the perfect enhancement factor? A current review. Int J Oral Maxillofac Implants 2003;18:93–103.
- 87. Gapski R, Wang HL, Mascarenhas P, Lang NP. Critical review of immediate implant loading. Clin Oral Implants Res 2003;14:515–527.
- Pjetursson BE, Brägger U, Lang NP, Zwahlen M. Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin Oral Implants Res 2007;18(suppl 3):97–113.
- Hermann JS, Cochran DL, Nummikoski PV, Buser D. Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. J Periodontol 1997;68:1117–1130.
- Meredith N, Book K, Friberg B, Jemt T, Sennerby L. Resonance frequency measurements of implant stability in vivo. A cross-sectional and longitudinal study of resonance frequency measurements on implants in the edentulous and partially dentate maxilla. Clin Oral Implants Res 1997;8:226–233.
- 91. Chiapasco M, Gatti C, Rossi E, Haefliger W, Markwalder TH. Implantretained mandibular overdentures with immediate loading. A retrospective multicenter study on 226 consecutive cases. Clin Oral Implants Res 1997;8:48–57.
- Karoussis IK, Salvi GE, Heitz-Mayfield LJ, Brägger U, Hämmerle CH, Lang NP. Long-term implant prognosis in patients with and without a history of chronic periodontitis: A 10-year prospective cohort study of the ITI Dental Implant System. Clin Oral Implants Res 2003;14:329–339.
- Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2—review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004;17:544–564.
- Kan JY, Rungcharassaeng K, Lozada J. Immediate placement and provisionalization of maxillary anterior single implants: 1-year prospective study. Int J Oral Maxillofac Implants 2003;18:31–39.
- Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004;19:100–106.
- Pjetursson BE, Tan WC, Zwahlen M, Lang NP. A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation. J Clin Periodontol 2008;35(suppl 8):216–240.
- 97. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006;17(suppl 2):68–81.
- Mericske-Stern R, Steinlin Schaffner T, Marti P, Geering AH. Periimplant mucosal aspects of ITI implants supporting overdentures. A five-year longitudinal study. Clin Oral Implants Res 1994;5:9–18.
- Pjetursson BE, Tan K, Lang NP, Brägger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. Clin Oral Implants Res 2004;15:625–642.
- 100. Piattelli M, Favero GA, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: A histologic long-term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999;14:835–840.
- Kent JN, Block MS. Simultaneous maxillary sinus floor bone grafting and placement of hydroxylapatite-coated implants. J Oral Maxillofac Surg 1989:47:238–242.
- 102. Choquet V, Hermans M, Adriaenssens P, Daelemans P, Tarnow DP, Malevez C. Clinical and radiographic evaluation of the papilla level adjacent to single-tooth dental implants. A retrospective study in the maxillary anterior region. J Periodontol 2001;72:1364–1371.
- Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A, et al. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res 2000;79:1519–1524.
- 104. Brånemark PI, Svensson B, van Steenberghe D. Ten-year survival rates of fixed prostheses on four or six implants ad modum Brånemark in full edentulism. Clin Oral Implants Res 1995;6:227–231.
- Roberts WE, Helm FR, Marshall KJ, Gongloff RK. Rigid endosseous implants for orthodontic and orthopedic anchorage. Angle Orthod 1989;59:247–256.

- Roos-Jansåker AM, Lindahl C, Renvert H, Renvert S. Nine- to fourteenyear follow-up of implant treatment. Part II: Presence of peri-implant lesions. J Clin Periodontol 2006;33:290–295.
- Kan JY, Rungcharassaeng K, Umezu K, Kois JC. Dimensions of periimplant mucosa: An evaluation of maxillary anterior single implants in humans. J Periodontol 2003;74:557–562.
- Lascala CA, Panella J, Marques MM. Analysis of the accuracy of linear measurements obtained by cone beam computed tomography (CBCT-NewTom). Dentomaxillofac Radiol 2004;33:291–294.
- Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J. Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res 2004;15:381–392.
- Randow K, Ericsson I, Nilner K, Petersson A, Glantz PO. Immediate functional loading of Brånemark dental implants. An 18-month clinical follow-up study. Clin Oral Implants Res 1999:10:8–15.
- 111. Klokkevold PR, Nishimura RD, Adachi M, Caputo A. Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin Oral Implants Res 1997;8:442–447.
- Szmukler-Moncler S, Piattelli A, Favero GA, Dubruille JH. Considerations
 preliminary to the application of early and immediate loading protocols
 in dental implantology. Clin Oral Implants Res 2000;11:12–25.
- Lekovic V, Kenney EB, Weinlaender M, Han T, Klokkevold P, Nedic M, Orsini M. A bone regenerative approach to alveolar ridge maintenance following tooth extraction. Report of 10 cases. J Periodontol 1997;68:563–570.
- McAllister BS, Haghighat K. Bone augmentation techniques. J Periodontol 2007;78:377–396.
- 115. Wetzel AC, Stich H, Caffesse RG. Bone apposition onto oral implants in the sinus area filled with different grafting materials. A histological study in beagle dogs. Clin Oral Implants Res 1995;6:155–163.
- Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic width around one- and two-piece titanium implants. Clin Oral Implants Res 2001;12:559–571.
- Misch CM. Comparison of intraoral donor sites for onlay grafting prior to implant placement. Int J Oral Maxillofac Implants 1997;12:767–776.
- Abrahamsson I, Berglundh T, Lindhe J. The mucosal barrier following abutment dis/reconnection. An experimental study in dogs. J Clin Periodontol 1997:24:568–572.
- Hebel KS, Gajjar RC. Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent 1997;77:28–35.
- 120. Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and risk indicators. J Clin Periodontol 2008;35(suppl 8):292–304.
- Chiapasco M, Zaniboni M, Boisco M. Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. Clin Oral Implants Res 2006;17(suppl 2):136–159.
- 122. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop 2006;130:18–25.
- Chen ST, Wilson TG Jr, Hämmerle CH. Immediate or early placement of implants following tooth extraction: Review of biologic basis, clinical procedures, and outcomes. Int J Oral Maxillofac Implants 2004;19(suppl):12–25.
- 124. Becker W, Becker BE, Caffesse R. A comparison of demineralized freeze-dried bone and autologous bone to induce bone formation in human extraction sockets. J Periodontol 1994;65:1128–1133.
- 125. Pontoriero R, Tonelli MP, Carnevale G, Mombelli A, Nyman SR, Lang NP. Experimentally induced peri-implant mucositis. A clinical study in humans. Clin Oral Implants Res 1994;5:254–259.
- 126. Seglen PO. Citation rates and journal impact factors are not suitable for evaluation of research. Acta Orthop Scand 1998;69:224–229.
- Bakkalbasi N, Bauer K, Glover J, Wang L. Three options for citation tracking: Google Scholar, Scopus and Web of Science. Biomed Digit Libr 2006;3:7.
- Falagas ME, Pitsouni El, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J 2008;22:338–342.
- 129. Dumont JE. The bias of citations. Trends Biochem Sci 1989;14:327–328.
- Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H.
 Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889–902.
- Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: Review of experimental literature. J Biomed Mater Res 1998;43:192–203.